
Training models: Gradient
Descent

.

26-09-2021

Jens Peter Andersen, Assistant Professor, Roskilde

Michael Claudius, Associate Professor, Roskilde, with respect and gratefullness to Jens Peter Andersen

Training models: Opening The Black Box

• It is about understanding what goes on behind the stage when models are trained and fitted to labels!

1. Linear regression refreshed

2. Define the cost function

3. Minimize the cost function, two types

• Closed Form Solution (Normal Equation)

• Gradient Descent Solutions: Batch GD, Stochastic GD (SGD), Mini-Batch GD

4. Regularize Linear Models to avoid vulnerabilities

• Overfitting, Underfitting, Learning Curves, Early Stopping

1

6

.

0

3

.

2

Closed Form: Evaluation

Typical complexity for closed form computations:

• Training the model with m feature instances is complexity O(m) – proportional to number of instances m

• Training the model with n features is complexity O(n(>2)) – proportional to quadratic number of features n(2)

• – e.g. increasing n by a factor 2 will increase processing resources needed by 22=4

• – e.g. increasing n by a factor 10 will increase processing resources needed by 102=100 ! That’s 100 times slower

• Processing resources are time and memory

• Advantage: Simple to compute

• Disadvantage: Slow for high number of features (n > 10.000)

• Examples: predicting on basis of the human genom

• We are lucky. Why? There is the Gradient Descent Solutions for these cases.

• BUT let us look at some code first.

1

6

.

0

3

.

3

Gradient Descent Solutions

• We are lucky. There is the Gradient Descent Solution for these cases.

• Batch GD,

• Use the whole training set to calculate gradients at each step

• Advantage: simple

• Disadvantage: Slow for a large training set

• Stochastic GD (SGD)

• Choose randomly one instance each time and calculate the gradient based on this instance

• Advantage: Fast, will come close to minimum

• Disadvantage: irregular path and bounce around the minimum

• Solution: Needs a good learning schedule

• Mini-Batch GD

• Choose randomly a batch; i.e. a set of instances each time and calculate the gradient based on this instances

• Advantage: Fast, will come close to minimum, more regular than SGD

• Disadvantage: bounce around the minimum

• Solution: Needs a good learning schedule

• BUT first we will look at the principles behind Gradient Descent

1

6

.

0

3

.

4

Gradient descent – General learning approach

• Applicable for various kinds of models, which includes:

• Linear

• Polynomial

• Logistic regression (classification)

• Out of core (memory) learning is possible

• Slow when m – the number of instances increases

• Faster then normal equation, when n - the number of model paramters θ1,…,θn - i.e. number of features increase

1

6

.

0

3

.

5

Gradient descent – Minimizing MSE

• Applied in order to optimize by minimizing a so-called cost function – typically MSE in machine learning.

• Here the Mean Square Error is a function of the model parameters – that is MSE(θ1,…,θn)

• ‘Gradient’ refers to observing on the slope of the cost function – negative, zero or positive.

• We want to end up in a set of values for θ1,…,θn where the slope of the cost function is zero – that means minimum reached.

• ‘Descent’ refers to that we are adjusting the values of θ1,…,θn in the direction where the cost function diminishes

1

6

.

0

3

.

6

Linear model - Mean squared error (MSE)

Problem: Finding the model parameters θ0 and θ1

ŷ= θ0 + θ1 x1

Solution: Finding the model parameters θ0 and θ1 by minimizing MSE:

MSE(θ1, θ0)= 1/N Σi=1..N (yi – (θ1 xi + θ0))2

1

6

.

0

3

.

7

Linear model - Mean squared root error

• Mathematically we want to calculate the so-called partially derivative with respect

to all model parameters in order to approach the minimum for MSE.

• With 2 model parameters the partially derivatives are expressed like this :

• ∂MSE(θ1, θ0)/ ∂θ1 - Expresses slope in the direction of θ1

• ∂MSE(θ1, θ0)/ ∂θ0 - Expresses slope in the direction of θ0

• Don’t worry we will look at the curves soon

1

6

.

0

3

.

8

Performing Gradient Descent

1

6

.

0

3

.

9

Now lets watch a video on Gradient Descent: Gradient Descent Statquest

Afterwards explain to yourselves in the groups the process on how the cost function

Mean Square Error (MSE) goes towards the minimum, use curves below for help.

https://www.youtube.com/watch?v=sDv4f4s2SB8

Performing Gradient Descent – the principle

While (Minimum not reached)

{

Based on the learning set:

θ0 = = θ0 - LearningRate * ∂MSE(θ1, θ0) / ∂θ0

θ1 = = θ1 - LearningRate * ∂MSE(θ1, θ0) / ∂θ1

}

1

6

.

0

3

.

10

Being too ‘scrooge’ with the learning rate

• Learning rate is too small will make gradient descent too slow

• That is, the model parameters θ0 ... θn are changed in small steps slowing down the algorithm

• Eventually MSE(θ0, …., θn) will converge towards a minimum

1

6

.

0

3

.

11

Being too ‘greedy/lazy’ with the learning rate

• Learning rate is too big will make gradient descent diverge away from finding the minimum MSE(θ0, …., θn)

• That is, the model parameters θ0 ... θn are changing in big steps that makes the learning algorithm get lost

1

6

.

0

3

.

12

Cost function: Challenges
• IF the cost function is “not nice” not-convex function with irregular shape with holes, ridges, plateaus then

• GD finds a local minimum

• GD takes long time to pass a plateau

• BUT we are lucky again. Why? The MSE cost function is a convex function !

1

6

.

0

3

.

13

Nice linear regression properties MSE cost function

• The MSE cost function for a Linear Regression model a so-called convex function

• Convex: Red line segment will never cross the curve below

• This means that is has only one global minimum.

• It is a continuous function with a slope that never changes abruptly

• Gradient Descent is then guaranteed to approach arbitrarily close the global minimum.

1

6

.

0

3

.

14

Gradient Descent – Feature scaling needed

• Feature scaling: Features (learning input) have same order of magnitude – e.g. in the the area -1 to 1

• To the left: Feature scaling applied -> Minimum of cost function approached faster

• To the right: Feature scaling not applied -> Minimum of cost function approached slower

• Feature scaling can be obtained by the Scikit-Learn’s StandardScaler

• Feature scaling is recommended for gradient descent algorithms

1

6

.

0

3

.

15

Gradient Descent: the learning rate - example

• To the left: ‘Scrooge’ learning rate η = 0.02 – too small approaching MSE optimum slowly

• In the middle: ‘Appropriate’ learning rate η = 0.1 – approaches MSE optimum in reasonable time

• To the right: ‘Lazy’ rate η = 0.5 – too big missing MSE optimum

1

6

.

0

3

.

16

Stochastic Gradient Descent: The Principle

• Instead of processing the entire training set, we randomly pick one training set instance at a time

• Faster than the Batch Gradient Descent

• But more erractic

While (Minimum not reached)

{

Based on picking one element at a time in the learning set randomly:

θ0 = = θ0 - LearningRate * ∂MSE(θ1, θ0) / ∂θ0

θ1 = = θ1 - LearningRate * ∂MSE(θ1, θ0) / ∂θ1

}

1

6

.

0

3

.

17

Mini-Batch Gradient Descent: The principle

• Instead of processing the entire training set, we pick a batch training set instance at a time

• Trade of between batch gradient descent and stochastic gradient descent

• Fast and less erractic

While (Minimum not reached)

{

Based on picking batch of elements at a time in the learning set randomly:

θ0 = = θ0 - LearningRate * ∂MSE(θ1, θ0) / ∂θ0

θ1 = = θ1 - LearningRate * ∂MSE(θ1, θ0) / ∂θ1

}

1

6

.

0

3

.

18

Comparing gradient descent approaches

Different paths in development in model parameters

1

6

.

0

3

.

19

Gradient Descent Evaluation

• We are lucky. There is the Gradient Descent Solution for these cases.

• Batch GD,

• Use the whole training set to calculate gradients at each step

• Advantage: Simple

• Disadvantage: Slow for a large training set

• Stochastic GD (SGD)

• Choose randomly one instance each time and calculate the gradient based on this instance

• Advantage: Fast, will come close to minimum

• Disadvantage: irregular path and bounce around the minimum

• Solution: Needs a good learning schedule

• Mini-Batch GD

• Choose randomly a batch; i.e. a set of instances each time and calculate the gradient based on this set of instances

• Advantage: Fast, will come close to minimum, more regular than SGD

• Disadvantage: bounce around the minimum

• Solution: Needs a good learning schedule

• So lets compare the different solutions

1

6

.

0

3

.

20

Some comparison on linear regression algorithms

1

6

.

0

3

.

21

That’s all folks

• Don’t let a little Gorilla Math scare you !

1

6

.

0

3

.

22

